
Your AI, Your Context
Raffi Krikorian <raffi@mozilla.org>
January 2026

Your context is scattered across the internet. Emails in Gmail, documents in Drive, purchase
history on Amazon, calendar in Outlook, notes in Notion. When you want AI to help with any of
it, you connect these services to third-party models directly — on terms you don't set. Which
data gets sent, which model processes it, what gets retained. You repeat your preferences to
every new AI. You're stuck with whatever model a website chose rather than the one you
chose.

We think there's a different model. Your AI, your context, your preferences — these become
resources the browser manages on your behalf, the way it manages camera access or location
today. Websites don't get access by default. They request it, you grant or deny, and the browser
enforces your decision. You bring your own AI to any website. Websites provide
domain-specific tools without managing inference. Context flows on your terms.

This document describes the technical foundation: a developer toolkit (APIs, SDKs, standards)
that enables a new category of AI-native web experiences. The centerpiece is the Web Agent
API, a browser-level standard built on the Model Context Protocol (MCP). We've built a sketch
of it in Harbor, a Firefox extension. But the goal isn't a Firefox feature — it's a standard any
browser, OS, or application could implement.

The Problem
For users. AI today requires constant context-shuttling. You manually bridge the gap between
your documents, emails, calendars and the AI that could help with them. Switch from one
model to another and all accumulated context disappears. There's no secure way to authorize
payments or verify identity within AI interactions. You're a renter in someone else's
infrastructure — not an owner.

For websites. A news publisher wants AI-native experiences — deep research across decades
of archives — but can't absorb inference costs. An e-commerce site wants personalization
("find a hub compatible with my MacBook") but doesn't have your context. A SaaS app wants
sophisticated AI features but doesn't want the burden of model deployment. Each builds the
same integration from scratch, or doesn't build it at all.

For developers. Building AI into web experiences today requires deep AI expertise and
significant API spend. You manage model connections, handle authentication, build tool

https://modelcontextprotocol.io
https://github.com/user/harbor

infrastructure, and pay for inference — all before delivering value. The plumbing should be
platform infrastructure, not application code.

Not every site will adopt this. SaaS that sees AI as a moat won't expose tools to third-party
models. That's fine — this isn't meant to replace embedded AI. It's for the sites that can't or
won't build their own: publishers who can't afford inference, retailers who want personalization
without user context, vertical SaaS that wants to focus on product rather than model
operations.

Context as a Resource
A decade ago, browsers introduced permission prompts for cameras and microphones —
sensitive resources that websites could request but not access without consent. The Web
Agent API extends this model to AI and context.

The browser becomes a secure repository for identity, credentials, preferences, and
accumulated AI context. When a website needs identity verification, payment authorization, or
access to user context, the browser mediates — just as it mediates camera access. The
permission model follows familiar patterns: "Allow Expedia to see my Calendar," with grant
types ranging from one-time access to persistent grants.

Bring Your Own AI

The current model: websites embed AI, users have no choice. The Web Agent API flips this.

Websites declare their tools via <link rel="mcp-server">. Users bring their preferred AI
— Claude, ChatGPT, a local Llama, whatever they've configured. The user's AI gains capabilities
from the website's tools without the website managing inference. Preferences and history stay
with the user. The website pays nothing for AI.

A realistic objection: most users don't have paid AI subscriptions. Local inference is the
practical default. This is actually an argument for the browser layer — it can route between
local models (simple tasks, privacy-sensitive contexts) and cloud models (when the user has a
subscription and the task warrants it). Even basic browser features benefit: smarter
autocomplete, URL bar suggestions, routed to small fast local models. As local model quality
improves, the threshold shifts.

Why the Browser

This can't live on the model provider side — users switch providers, and context would remain
splintered. It could live at the OS level, but users span operating systems, and the companies
that make them have incentive to maintain walled gardens. The browser is the natural home:
it's already the user agent, it's where knowledge workers spend their time, and it can be
independent of both model providers and operating systems.

JavaScript

The browser layer also enables enterprise policy control. Organizations can govern which AI
models employees use through the same browser policy mechanism used for extensions,
security settings, and site permissions — restrict providers to an approved list, require
local-only execution for sensitive workloads, or route inference through a corporate endpoint.

The Web Agent API is designed as a portable standard, not a Firefox-specific feature. Firefox is
where we build and demonstrate. The standard is what matters.

MCP as Foundation
We build on the Model Context Protocol, an open standard that defines how AI systems
connect to tools. MCP provides standardized tool definitions, structured schemas, and
discovery mechanisms. Think of it as USB for AI — before USB, every peripheral needed its own
connector.

MCP is a starting point, not an endpoint. The architecture separates the browser API surface
from the underlying tool protocol. As MCP evolves or complementary standards emerge,
implementations adapt without breaking web applications. The bet is on the pattern —
browser-mediated AI with user-controlled tool access — not on any single protocol.

The Web Agent API
The Web Agent API is the specification at the heart of this proposal. It defines the surfaces
web applications use (window.ai, window.agent), the permission model that governs
access, and the contract between browsers and websites.

Chrome Compatibility

The API is designed for compatibility with Chrome's emerging Prompt API — apps built for
Chrome's window.ai surface should work here. But the Web Agent API extends beyond basic
prompting to include tool discovery, tool execution, autonomous agent loops, and browser
context access. These are the capabilities that make Bring Your Own AI possible.

window.ai — Model Access

Compatible with Chrome's Prompt API, plus extensions for provider choice:

// Basic prompting (Chrome-compatible)

https://modelcontextprotocol.io

JavaScript

const session = await ai.languageModel.create({​
 systemPrompt: "You are a helpful assistant"​
});​
const response = await session.prompt("Summarize this page");

// Extended: choose your provider and model​
const providers = await ai.providers.list();​
const session = await ai.languageModel.create({​
 provider: "anthropic",​
 model: "claude-sonnet",​
 allowTools: true​
});

window.agent — Tools and Autonomous Execution

The agent namespace is where the Web Agent API goes beyond prompting:

// Discover tools the website offers

const tools = await agent.tools.list();

// Call a tool directly​
const result = await agent.tools.call(​
 "newsarchive/search",​
 { query: "climate policy", dateRange: "2020-2024" }​
);

// Run an autonomous agent loop​
for await (const event of agent.run({​
 task: "find accessories compatible with my laptop",​
 maxToolCalls: 10​
})) {​
 if (event.type === "token") process.stdout.write(event.text);​
 if (event.type === "tool_call") console.log(`using:
${event.tool}`);​
}

HTML

MCP Server Discovery

Websites declare MCP servers with a link tag:

<link rel="mcp-server"​
 href="https://example.com/mcp"​
 title="Example Tools">

The browser discovers these automatically. Servers can also be registered at runtime via
agent.mcp.register().

API Summary

Area Key Methods

Model access ai.languageModel.create(), session.prompt(),
session.promptStreaming()

Provider choice ai.providers.list(), ai.runtime.getBest()

Tool discovery agent.tools.list(), agent.mcp.discover()

Tool execution agent.tools.call()

Autonomous
agents

agent.run() — yields events: status, tool_call, tool_result,
token, final, error

Page context agent.browser.activeTab.readability()

Server
registration

agent.mcp.register()

https://example.com/mcp

The full API reference is in the Web Agent API Specification.

Permission Model
All operations require explicit user consent. Permissions are granted per-origin with complete
isolation.

Scopes

Scope Risk What It Enables

model:prompt Low Basic text generation

model:tools Medium AI with tool calling

mcp:tools.list Low Listing available tools

mcp:tools.call High Executing tools

mcp:servers.registe
r

Medium Registering MCP servers at runtime

browser:activeTab.r
ead

Medium–High Reading current page content

context:identity High Accessing user identity

context:payment High Accessing payment methods

Grants

Grant Duration Behavior

ALLOW_ONCE 10 min or tab
close

Temporary; re-prompts after

ALLOW_ALWA
YS

Persistent No future prompting for this scope

DENY Persistent Blocks re-prompting from this origin

Tool Allowlisting

The mcp:tools.call permission is necessary but not sufficient. Even with it granted, an
origin has access to no tools by default. Users explicitly allowlist specific tools per origin. This
prevents a blanket "allow tools" grant from exposing everything.

Origin Isolation

Each origin operates in complete isolation — separate permissions, separate tool allowlists,
separate session state, separate rate limits, separate MCP registrations. Origin is verified by the
browser, not by page-provided values.

Errors are structured (ERR_PERMISSION_DENIED, ERR_TOOL_NOT_ALLOWED,
ERR_TOOL_NOT_FOUND, etc.). See the full spec for the complete error reference.

Implementation Flexibility
The Web Agent API is a standard. Implementations can vary — what matters is that they
expose the same surfaces to web applications and speak MCP to tools.

Possible approaches:

●​ Browser extension + external bridge — An extension bridges to a process that hosts
MCP servers and manages LLM connections. Harbor takes this approach. Works across
browsers without engine changes.

●​ Browser extension + WASM — Everything in-browser, no external process.

●​ Native browser integration — MCP hosting in the engine, like Chrome's Prompt API
with Gemini Nano.

●​ OS-level service — Shared across browsers and applications via IPC.

●​ Cloud proxy — For mobile or resource-constrained environments.

What You Could Build

●​ A news site exposes an MCP server to its 20-year archive. Readers run deep research
with their own AI. The publisher pays nothing for inference.

●​ An e-commerce site provides product search tools. Your AI brings the context ("I own
a MacBook Pro M3, prefer brand-name electronics") and surfaces compatible
accessories without you re-explaining.

●​ A SaaS app offers document analysis, intelligent search, workflow automation — by
exposing domain tools, while focusing on product rather than model APIs.

●​ Privacy-preserving personalized ads where context never leaves the device.

●​ Agent-to-agent coordination for group planning across users.

●​ Portable AI identity that persists across model switches.

Get Involved

This is a proposal, not a finished standard. We're figuring this out and we want thought
partners.

Harbor is the sketch — a working Firefox extension that proves the architecture. Start there if
you want to build on it:

●​ Harbor repo + getting started

●​ Web Agent API Specification

●​ Building on the Web Agent API

We want feedback from:

●​ Web developers — Would you add <link rel="mcp-server"> to your site? What
tools would you expose? What's missing from the API?

●​ AI tool builders — Does this architecture work for your use case? What would you build
on top of it?

https://github.com/user/harbor

●​ Security and privacy folks — Does the permission model hold up? What attack vectors
are we missing?

●​ Standards people — Is the Web Agent API on the right track to become a real
standard?

We're not trying to own this. We're trying to figure out what AI on the user's side looks like. If
the pattern is right, other browsers will implement it — just as they implemented Service
Workers after one browser shipped first.

	Your AI, Your Context
	The Problem
	Context as a Resource
	Bring Your Own AI
	Why the Browser

	MCP as Foundation
	The Web Agent API
	Chrome Compatibility
	window.ai — Model Access
	window.agent — Tools and Autonomous Execution
	MCP Server Discovery
	API Summary

	Permission Model
	Scopes
	Grants
	Tool Allowlisting
	Origin Isolation

	Implementation Flexibility
	What You Could Build
	Get Involved

